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A reexamination is made of convection, induced by an applied temperature gradient 
inclined to the vertical, in a shallow horizontal layer. The horizontal component of this 
gradient induces a Hadley circulation, which becomes unstable when the vertical 
component is sufficiently large. A linear stability analysis is carried out, for the case of 
rigid conducting horizontal boundaries, in terms of horizontal and vertical Rayleigh 
numbers, R H and Rv, respectively. This analysis is valid for any Prandtl number, Pr, and 
incorporates the case, Rv -- 0. The differential equation system is solved using a direct 
Galerkin approximation. This is convenient for numerical calculations in the parameter 
range of interest and also enables some general results to be obtained analytically. The 
results confirm and extend those of previous investigators. 
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I n t r o d u c t i o n  

Many articles have been written on convection, in a horizontal 
fluid layer, induced by imposed temperature gradients that are 
either vertical or horizontal, whereas few articles have dealt 
with convection induced by an inclined temperature gradient. 
The available evidence (e.g., in the articles cited later) suggests 
that the differential equation system that governs such a flow 
will, in general, have multiple solutions, and so a direct 
numerical approach is not guaranteed to find the solution that 
is physically significant. Thus, it is of interest to examine in 
detail a simple situation that is likely to be paradigmatic for 
more complicated problems. Besides this theoretical impor- 
tance, the configuration examined later is useful for modeling 
a number of physical systems. Drummond and Korpela (1987) 
give references to studies of the region enclosing auxiliary 
cooling systems for high-temperature gas-cooled reactors, 
circulations in planetary atmospheres, dispersion of pollutants 
in estuaries, the growth of metal crystals, and a solar-energy 
storage system. 

Accordingly, we consider flow in a shallow horizontal box 
(one with small height-to-length and height-to-width aspect 
ratios). The unicellular flow induced in such a box by an 
imposed lengthwise temperature gradient has been called the 
Hadley circulation by Hart (1972). Well away from the lateral 
walls the basic flow is unidirectional and independent of the 
horizontal coordinates. This has been checked experimentally 
by Imberger (1974). The stability of this basic flow has been 
analyzed by several authors including Hart (1972, 1983), 
Daniels et al. (1987), Drummond and Korpela (1987), Laure 
and Roux (1987, 1989), Kuo and Korpela (1988), Wang and 
Korpela (1989) and Crespo del Arco et al. (1989), whereas 
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experimental results have been reported by Hung and 
Andereck (1988). Because of the application to thermal 
oscillations in liquid metals (Gill 1974), special interest has been 
taken in the case of fluids with low Prandtl number, Pr. 

The basic Hadley flow can also become unstable when there 
is also heating from below, so that the resultant applied 
temperature gradient is inclined to the vertical. This situation 
was analyzed by Weber (1973) for the case of stress-free 
boundaries and small horizontal temperature gradients. His 
linear stability analysis was repeated by Bhattacharyya and 
Nadoor (1976) (for the case of rigid boundaries) and Nadoor 
and Bhattacharyya (1981) [for the magnetohydrodynamic 
(MHD) situation]. Sweet et al. (1977) used a linear, mean field 
approximation to investigate oscillatory convection in low 
Prandtl number fluids. 

The restriction to small horizontal gradients was lifted by 
Weber (1978), but his analysis and calculations were restricted 
to small and moderate values of Pr. In the present article the 
problem is reformulated so that the case of large Pr can be 
dealt with. Weber worked in terms of a vertical Rayleigh 
number and a horizontal Grashof number, whereas in this 
article a vertical Rayleigh number, R v, and a horizontal 
Rayleigh number, R., are introduced. It turns out that this has 
some important advantages. It enables the case of large Pr 
number to be treated easily, and it allows the theory to be tied 
in with the case of Rv = 0, the situation dealt with by Hart 
and the other authors mentioned earlier. It also allows one to 
appreciate the effect of increasing RI4 on the shape of the basic 
vertical temperature profile and the other effects of increasing 
R.. It turns out that the expression for the basic steady 
temperature distribution, which is the prime agency affecting 
the critical vertical Rayleigh number when Pr is large, is a 
function of RH e. (The curves in Figure 2a are nearly parabolas.) 
The situation for other values of Pr is more complicated. 

The resulting differential equation eigenvalue problem has 
been solved using a low-order Galerkin method. This is 
convenient and is sufficiently accurate for the purpose at hand. 
Further, the integrals involved can be interpreted as energy 
integrals, and this leads to additional insight into the nature 
of the mechanisms involved in the instability. 
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Basic  f l o w  

The situation considered is illustrated in Figure 1. It is that 
discussed by Weber (1978), but, with some future extensions in 
mind, we prefer to use some different notation. The fluid is 
bounded by two horizontal planes a distance d apart. A 
Cartesian coordinate system (x*, y*, z*) is taken with origin 
midway between these planes and with the z*-axis vertically 
upward. (The asterisks denote dimensional variables.) A linear 
horizontal temperature gradient is imposed in the x*-direction, 
and a constant temperature difference is imposed between the 
two planes. Accordingly we have the temperature condition. 

T* = T O - fin x* + AT~2 at z* = -(_+d/2) (2.1) 

where fin is a constant, which, without loss of generality, can 
be assumed to be positive. The ratio of the height to the length 
of the layer is assumed to be sufficiently small so that the 
motion in the horizontally central part is not affected by lateral 
end effects. 

We treat a fluid of thermal diffusivity, x, kinematic viscosity, 
v, and density, p, which is given by 

p = Poll -- =T(T* - To)] (2.2) 

We adopt the Oberbeck-Boussinesq approximation. In 
nondimensional form, the governing equations can be written 

Pr-l[8v/~t + (v. V)v] = - V p  + VZv + Tk (2.3) 

dT/t~t + v.VT = V2T (2.4) 

V" v = 0 (2.5) 

Here v = (u, u, w) is the velocity vector, k is the unit vector in 
the z-direction and Pr is the Prandtl number v/x. The scales 
d for length, d2/r for time (and so rid for velocity), porv/d 2 for 
pressure (excess over hydrostatic) and AT/Rv for the 
temperature (excess over the standard temperature To) have 
been chosen. The vertical Rayleigh number Rv is defined by 

R v = #aTd3AT/vx (2.6) 

The nondimensional form of the boundary conditions (for the 
case of rigid conducting boundaries) is 

v = 0 and T = - ( + R e / 2 )  - R.x at z = +1/2 (2.7) 

z - - d/2 

Figure 1 Definition sketch 

T-To+AT/~,- p x 

The horizontal Rayleigh number Rn is defined by 

R.  = R v dfla/A T = Oot T d4fla/vr (2.8) 

Equations (2.3-2.7) admit a steady-state solution of the form 

U s = U ( z ) ,  v s = V(z), w s = 0, PS = PS( x ,  Y, Z), T s = '~(z) - -  RHx 
(2.9) 

provided that 

D 3 U  = - -RH,  D a v =  0, O 2 ~  = - R H U  (2.10) 

and 

U = V = 0 and ~ = -(_+Rv/2) at z = +1/2 (2.11) 

where D denotes the derivative d/dz. 
Let ((')> denote the integral Sl_/~/2(.)dz. 
The requirement that there be no net horizontal mass flux 

implies that 

(U> = 0, (V> = 0 (2.12) 

The solution to Equation 2.10 subject to Equations 2.11 and 
2.12 is given by 

U(z) = RH(Z/24 -- za/6), V(z) = 0 (2.13) 

~(z) = - R v z  + R~(7z/5,760 - z3/144 + zS/120) (2.14) 

S t a b i l i t y  a n a l y s i s  

We now perturb the steady-state solution. We write 
T = T  s + 0 '  u = u  s + u ' ,  and so on. We substitute these 
expressions and linearize with respect to the primed quantities. 

N o t a t i o n  

Aj, Bi, C i 
d 
D 
g 
i, j, k 
1, m 

Mij 
P 
Pr 
RH 
Rv 
t 
V 
~(z) 

AT 

U(z), V(z) 
X, y, z 

constants in Equation 4.2 
layer depth (m) 
differential operator, d/dz 
gravitational acceleration (m s-2) 
unit vectors 
dimensionless wavenumbers in the x- and 
y-directions 
matrix element 
dimensionless pressure (excess over hydrostatic) 
Prandtl number 
horizontal Rayleigh number, ga T d4fln/wc 
vertical Rayleigh number, g=r d3 A T/vg 
dimensionless time 
dimensionless velocity vector 
dimensionless vertical variation of the basic 
temperature 
temperature difference between lower and upper 
boundaries (K) 
dimensionless steady-state velocity components 
dimensionless Cartesian coordinates 

Greek letters 

ct dimensionless overall horizontal wavenumber 
~t T coefficient of volume expansion (K-1) 
flH horizontal temperature gradient 
0 dimensionless temperature perturbation 
x thermal diffusivity (m 2.  s -  1) 
v kinematic viscosity (m 2. s-1) 
p density (kg" m-  a) 
cr dimensionless frequency for disturbances 

Subscripts 

c critical 
s steady state 
0 standard 

Superscripts 

' perturbation quantities 
* dimensional variables 
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We also write 

[u', v', w', e', f ]  = [u(z), v(z), ~z) ,  e(z~ p(~)] 

x exp{ i (kx  + ly - ~t)} (3.1) 

When we substitute Equation 3.1 and eliminate u, v and p from 
the resulting perturbation equations we obtain the system 

[Pr(D 2 _ ~2) _ i (kU - ~7)] 

x (D 2 - ~2)w + ik D2Uw - ~2pre = 0 (3.2) 

[D 2 - o~ 2 --  i (kU - o)]0 + R.u - wDT = 0 (3.3) 

[Pr(D 2 _ ~2) _ i (kU - ~)](-u2u + ik Dw)  + 12 D U w  = 0 (3.4) 

subject to 

u = w = D w = 0 = 0 a t z =  +1 /2  (3.5) 

Here = = ( k 2 +  12) 1/2, the overall nondimensional wave- 
number. These equations can be written as 

D T  L 2 - - R  H ' 0 = 0  (3.6) 

L, 0 L3J L"J 
where 
LI  = ( D  2 --0C2) 2 

+ i P r -  1 {¢r(D 2 _ ~x2) + k i D  2 U - U(D 2 - ~2)] } (3.7) 

L 2 = -- (D 2 - -  0t2) @ i(k U - ~) (3.8) 
L3 = - ( D  2 - <x 2) + i P r - l ( k U  - ~) (3.9) 

L ,  = ~ t - 2 { p r - l l 2 D U  - ikL3D } (3.10) 

Galerkin method 

Weber (1978) converted the set of ordinary differential 
equations (Equation 3.6) into a matrix eigenvalue problem for 
eigenvalues or, but we prefer to apply a Galerkin method 
directly to Equation 3.6, employing the standard technique 
described by Finlayson (1972). As trial functions (satisfying the 
boundary conditions) for w, O, and u we take 

W~ = z ' - l ( z  2 -  1/4) 2, T i = Ui = z i - l (z  2 -  1/4) 2 (4.1) 

(Finlayson showed that using these trial functions led to rapid 
convergence in the case of the Rayleigh-Benard problem 
( g  H = 0).) W e  wri te  

N N N 
W = E Ai Wi, 0 = E Bi Ti, u = E c i  u i  (4.2) 

iffil i=1 i=1 

substitute into the three equations (Equation 3.6), and make 
the residuals orthogonal to W~, T~ and U l, respectively, for 
i - -  1, 2 . . . . .  N. Eliminating the constants Al, B~ and C~ from 
the resulting homogeneous equations, we get 

det(M) = O (4.3) 

where M is the 3N x 3N matrix with elements given, for 
i , j =  1,2 . . . . .  N ,  by 

M 3 i _ i . 3 j _  2 = (LIWj, Wi), M 3 1 - 2 . 3 j - 1  

= --o~2<Tj, Wi), M 3 1 - 2 . 3 ) = 0  

Msi-l ,3j-2  = (DT*W~, Ti>, M3t_l.3j_ 1 

= ( L 2 T j ,  Ti), M3 i -1 ,3 j  = - - R H ( U I ,  Tt) 
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Mzi .3 j_  2 = ( L 4 W j ,  U I )  , M31.j_ 1 --  0, M3i.3 j = (L3 Uj, Ui) 
(4.4) 

Equation 4.3 may be regarded as an eigenvalue equation that 
yields an eigenvalue Rv as a function of the parameters =, Pr, 
R, ,  where = = ( k 2 +  12) 1/2. The critical vertical Rayleigh 
number is the minimum of Rv as k and I vary. 

The various integrals that appear in these equations can be 
expressed in terms of the quantities E ( i , j ) = ( z i - l ( z  2 -  
1/4)J), which are readily evaluated (see, e.g., Finlayson (1972, 
p. 153). For the case N = 2 this process was completed 
algebraically, but for the case of larger N numerical 
computation of the integrals was performed. 

R e s u l t s  a n d  d i s c u s s i o n  

Quafitaf ive results 

We need to test for stability both stationary and oscillatory 
modes, and modes of various orientations, varying between 
longitudinal and transverse. The term longitudinal is applied 
to the situation in which the additional convective flow is in 
the form of rolls whose axes are parallel to the applied 
horizontal temperature gradient, that is, parallel to the x-axis. 
Longitudinal disturbances are thus independent of x and are 
characterized by k = 0. Likewise, transverse disturbances are 
characterized by l = 0. 

Some general qualitative conclusions can be readily drawn 
from the analytical form of Equation 4.3. For k = 0 the 
equation factorizes into two equations, one factor correspond- 
ing to an even mode and the other to an odd mode. For neutral 
stability the frequency ~r is real, and taking the real and 
imaginary parts of one of these equations yields two equations 
from which cr can be eliminated. In the first approximation the 
equations are sufficiently simple for the elimination to be done 
algebraically. We find that for the first (even) mode, we have 
either ~r = 0 (a stationary mode) and 

28 
Rv = ~ [(504 + 24cx 2 + ~2X10 + ~x2)] 

R I 17 1 } 
+ H 2 ~  + 36Pr(10 + =2 i (5.17 

or (the second alternative) 

~r 2 = -(10 + ~2)2pr2 

3Rw0t2pr 

+ 112{(504 + 24~ 2 + =*)Pr + (12 + cx2X10 + cx2)} (5.2) 

and 

R v = 2 8  (Pr+ 1)[504+240t 2 +u*+(12+u2)(10+~,2)](10+~2) 
27= z 

12+= 2 
+ S w {  23,76017 36[(504 + 24~2 + ~*)Pr + (12 + ~2)(10 + =2)] } 

(5.3) 
A short calculation shows that the right-hand side of 
Equation 5.3 is less than the right-hand side of Equation 5.1 if 
and only if R H is large enough so that the right-hand side of 
Equation 5.2 is positive. This demonstrates the bifurcation of 
the neutral curve for the first longitudinal oscillatory mode 
from that for the first longitudinal stationttry mode, at  a value 
of R. ,  which increases as Pr increases. In particular, it is clear 
that unstable longitudinal oscillatory modes do not exist in the 
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limiting case as Pr tends to infinity, because then Equation 5.2 
gives no real value for or. (This is in accord with the finding by 
Nield C1991] that in the corresponding problem for a porous 
medium, for which Darcy's law is applicable, all longitudinal 
oscillatory modes are stable.) In fact, for infinite Pr Equations 
3.2-3.4 reduce to the pair 

(D 2 - =2)2w - ~20 = 0 (5.4) 

['D 2 _ ~2 _ i (kU - a)]O + (ik/otZ)Raw - D~*w = 0 (5.5) 

and from the form of Equation 5.5 we can anticipate that one 
will get instability with t7 = 0 if and only if k = 0. The 
importance of the inertial terms (in the left-hand side of 
Equation 2.3) for longitudinal oscillatory instability at finite Pr 
is clear. 

We see from Equations 3.2-3.5 that the situation is generally 
more complicated for the transverse modes (I = (3) than for the 
longitudinal modes. For  the transverse modes Equation 4.3 
does not factorize into two equations, for even and odd modes. 
We find that the lowest transverse oscillatory mode involves a 
beating effect between an even and an odd mode. 

When Equations 3.2-3.4 are multiplied by w, 0 and u, 
respectively, and integrated with respect to z, we obtain 

Pr([(D2w) 2 + 2ctZ(Dw) z + ~t4w4]} 

=ctZPr(wO} + ( i ( k U  - o'X D2 - g2)w. w~ - i k ( D Z U ,  w 2} 

(5.6) 

([(D0) 2 + 0t202]} = - ( D ~ * w 0 }  - i k (UO 2} + Rx~u0 } (5.7) 

Pr([(Du) 2 + ~t2u2] } = - i ( ( k U  - tT)u 2 } - i(k/ot2)(u(D 2 - ~t2)Dw} 

- k 2 ( u U  Dw} - 12(UW DU} (5.8) 

The integrals (which are of similar nature to the elements 
that appear in Equation 4.4) in these three equations can be 
interpreted as energy integrals. Those on the left-hand sides 
correspond to dissipation of energy, and on the right-hand sides 
the terms involving i~r are growth terms, and the remainder are 
source terms. From Equation 5.7, for example, we see that for 
longitudinal modes there are terms corresponding to transfer 
of thermal energy through interaction of the perturbation 
velocity with the basic vertical and horizontal temperature 
gradients. For  transverse modes there is also a term 
corresponding to the transfer of thermal energy by means of 
the basic horizontal velocity distribution. 

Numerical  results 

Calculations have been performed, for various values of Pr and 
for a range of RH values, of the critical value of Rv (minimized 
with respect to =) and the corresponding values of = and or, and 
the results are presented in Figures 2-5. The presented results 
are confined to those for longitudinal and transverse 
orientations. In only one situation, of those considered, is an 
oblique mode favored rather than a corresponding longitudinal 
or transverse one. This is the case for Pr = 1 (Figure 4). In the 
range of RH values from about 1,500-3,000 (where the neutral 
curves for longitudinal and transverse stationary modes are 
close together) an oblique mode can b¢ the favored stationary 
mode, but the difference in the critical value of Rv is at most 
only 2 percent (so that, if drawn, the additional curve would 
have been almost coincident with those drawn); in any case, 
this is not physicagy important because an oscillatory mode is 
the most favored mode in this range. 

The Gaierkin approximation was employed with order of 
approximation N equal to 2 or 4. Comparison between the two 
sets of results showed that the N = 2 results for critical Rv are 
accurate to within 7 percent (the order of accuracy normally 
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0 I I 
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1- 

0 
0 

Ls2  
To 

J 

[P,= lOOl 
I I 

2OO0 40OO 6000 

O 

300 

200- 

100- 

0 
0 

I P r = l  

2000 4000 6000 R. 
Figure 2 Values of the critical vertical Rayleigh number Rv, and 
the corresponding horizontal wavenumber = and frequency or, for 
Pr = 100. In this and the following figures, the labels for the various 
modes are as follows: Lsl, first (even) longitudinal stationary; Ls2, 
second (odd) longitudinal stationary; Lo, longitudinal oscillatory; 
Ts, transverse stationary; To, transverse oscillatory 

attainable in experiments involving Benard convection) for the 
parameter ranges shown (Rn from 0-6,000, Rv from 0-25,000) 
except for the ca.so of transverse oscillatory modes, for which 
the error rises to 25 percent for the larger values of Re. (The 
reason for the differ©nee is not definitely known at present, but 
it is probably a result of a substantial change in the shape of 
the eigenfunction.) The plots presented are for values obtained 
with N = 4, that is, from computations involving the zeros of 
determinants of order 12. As is well known, the evaluation of 
determinants of large order is severely restricted by 
accumulated round-off error, and 12 was the largest order 
which could be used here. The largest value RH = 6,000 that 
we have taken corresponds approximately to the maximum 
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Figure 3 Values of the critical vertical Rayleigh number Rv, and 
the corresponding horizontal wavenumber = and frequency or, for 
Pr = 10 

value for which the basic vertical temperature gradient is 
negative throughout the layer. At higher values of Ra our 
Galerkin approximation breaks down because the eigenfunc- 
tion for w becomes markedly different in form from the 
polynomial trial functions that we have chosen. This is not 
surprising because one would expect that when D~* becomes 
positive for a range of z (in the middle of the layer) the 
asymptotic form (as R H tends to infinity) of w will be oscillatory 
in that range. This implies that the form of the perturbation 
flow at large values of RH will be in the form of multiple layers 
of superposed rolls. (At sufficiently large R H the Boussinesq 
approximation will not be valid.) 

Figures 2a and 3a show that for large Pr values (10 and 
larger) an even longitudinal stationary mode is favored (the 
most unstable) for values of Ra up to about 5,000, after which 
a transverse oscillatory mode is favored within a small range 
of Ra values, beyond which an odd longitudinal stationary 
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mode (a two-layered roll pattern) is favored. In contrast (see 
Figure 4a), for Pr = 1 a transverse stationary mode is favored 
for small values of RH and a longitudinal mode is favored at 
larger values of RH. In each of these cases the critical Rv 
increases as Ra increases within the range shown. (The results 
of Hart [1972] indicate that this trend does not continue for 
higher values of Ra.) The situation for Pr = 0.1 is dramatically 
different (see Figure 5a). Now the transverse stationary mode 
is favored for all Ra values, and Rv decreases as RH increases, 
reaching a zero value (and then going negative) at RH = 1,000. 
Thus, even in the absence of an applied vertical temperature 
gradient, the Hadley flow becomes unstable when Ra is 
sufficiently large. This result for Pr = 0.1 is in accord with the 
findings of Hart (1972). An estimate from his Figure 5 is 
Ra = 925 when Pr = 0.1. 

The corresponding critical horizontal wavenumber is plotted 
in Figures 2b, 3b, 4b and 5b. For the longitudinal stationary 
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5000- Lsl 

0 I I 

0 2000 4000 6000 
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3 -  
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O I 

0 2000 
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4013O 6OOO 1% 
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100- 

8o-  

a 60- 
40- 

20 

To 

' I ' 

0 20OO 40O0 60OO R. 
Figure 4 Values of the critical vertical Rayleigh number Rv, and 
the corresponding horizontal wavenumber = and frequency ~, for 
Pr ffi 1 
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Figure 5 Values of the critical vertical Rayleigh Number R v, and 
the corresponding horizontal wavenumber = and frequency a, for 
Pr = 0.1 

and transverse oscillatory modes the critical = increases as RH 
increases, whereas for the transverse stationary and longi- 
tudinal oscillatory modes the opposite is the case. Values of 
the critical frequency a are plotted in Figures 2c, 3c, 4c and 5c. 

When comparison is possible, our  theoretical results appear 
to be in accord with those of Weber (1978). For  example, from 
his Figure 6 we conclude that the transverse steady mode is 
favored when Pr  = 1, and an estimate of 16.0 for Re × 104, 
yielding a value of 3,310 for Rv, is obtained. The present 
calculations gave the value 3,333. 

We conclude that our approach is giving useful results for 
R ,  values up to 6,000. The range of higher RH values remains 

to be explored. As was mentioned earlier, the information at 
hand suggests that the eigenfunction changes dramatically, 
there being an increasing number  of zeros within the layer, as 
R H increases. 

As far as the author  is aware there are no experimental results 
available for comparison. 
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